
Early-Warning Signals for Disease Activity in Patients Diagnosed with
Multiple Sclerosis based on Keystroke Dynamics

J. Twose,1, a) G. Licitra,1, b) H. McConchie,1, c) K.H. Lam,2, d) and J. Killestein2, e)
1)Neurocast B.V., Amsterdam 1097DN, The Netherlands
2)Department of Neurology, Amsterdam University Medical Centers, Amsterdam 1105AZ,
The Netherlands

(Dated: 7 October 2020)

Within data gathered through passive monitoring of patients with Multiple Sclerosis (MS), there is a clear necessity
for improved methodological approaches to match the emergence of continuous, objective, measuring technologies.
As most gold standards measure infrequently and require clinician presence, fluctuations in the daily progression are
not accounted for. Due to the underlying conditions of homogeneity and stationarity (the main tenets of ergodicity)
not being met for the majority of the statistical methods employed in the clinical setting, alternative approaches should
be investigated. A solution is to use a Non-Linear Time Series Analysis (NLTSA) approach. Here Early Warning
Signals (EWS) in the form of critical fluctuations in Keystroke Dynamics (KD), collected using participant’s smart
phones, are investigated as indicators for clinical change in three groups. These are: patients with MS and changes
in Magnetic Resonance Imaging (MRI), patients with MS but without changes in MRI, and healthy controls (HCs).
Here, we report examples of EWS and changes in KD coinciding with clinically relevant changes in outcome measures
in both patients with and without differences in the amount of MRI enhancing lesions. We also report no clinically
relevant changes in EWS in the HC population. This study is a first promising step towards using EWS to identify
periods of instability as measured by a continuous objective measure as a proxy for outcome measures in the field of
MS.

The monitoring of disease activity in chronic diseases such
as Multiple Sclerosis (MS) is integral to assist clinicians
in tracking the progress of the disease, and any treat-
ments or interventions. Non-Linear Time Series Analy-
sis (NLTSA) can be used to quantify change in time se-
ries data, enabling the identification of clinically relevant
changes in Keystroke Dynamics (KD). In the current study
the research question focuses on the feasibility of using the
continuous objective measure of KD in conjunction with
NLTSA. Hence, we show examples of change in KD which
coincide with clinically relevant changes in outcome mea-
sures in patients with MS. To contrast this, we also show
no clinically relevant change in a HC population. This
study may be seen as a promising first step towards a
NLTSA approach being applied to data from a continu-
ous, objective measure that can monitor change in status
within patients with MS. Future research should look at
improving the statistical methodology used here, quantify-
ing the predictive nature of the change in KD as a proxy
for the outcome measures, and broadening the use of this
approach out to other diseases.

I. INTRODUCTION

Biometric data are physical or behavioural features1 that
are unique to each person and can be used as a means of in-
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dividual validation for security purposes. Physical biometric
features can include, for example, finger prints, iris scans and
face scans which are unlikely to change except through physi-
cal damage. Behavioural features are able to change based on
the variable state of a person and can include KD, gait, voice,
and other personal identifiers from which an overall personal
profile can be developed2. The biometrics of KD are based
on the assumption that different people have different typing
mannerisms, and that these neuro-physiological factors are re-
flected in the data of that individual, leading to a "typing sig-
nature" of a person at any given time.

Within this study we recruited a population of individuals
with MS. Given the nature and subtypes of MS, the dis-
ease activity and disease progression can vary greatly over
time both between and within individuals3. Typically, clini-
cal visits occur every 3-12 months for patients with MS, and
increasing clinical visits to track the variation that occurs be-
tween these visits would introduce burden into a population
already hampered by their chronic disease management4. The
current gold standard methods5 for measuring changes in dis-
ease activity are lesion changes gathered through MRI6,7, the
Expanded Disability Status Scale (EDSS)8, Nine Hole Peg
Test (9HPT)9, and the Timed 25 Foot Walk (T25FW)10. Many
of these measures are subjective, infrequently sampled, re-
quire clinician presence, and can be burdensome. Addition-
ally, given the nature of the data (infrequently sampled and
therefore in low abundance) this data is analysed on a group
level. This aggregation irons out variation on the individual
level. A more patient centric, and individualised approach
could increase the data quality and quantity while improving
the lives of individuals living with chronic diseases11,12. KD
are an example of one solution to this need.

Here, KD data are collected passively by the Neurokeys13

App designed by the Dutch company Neurocast B.V.14. The
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Neurokeys App is a smart-keyboard which replaces a user’s
native keyboard and tracks how, but not what the user is typ-
ing. Compared to classic methods for gathering clinical data
in MS, this offers the ability to collect objective data with high
frequency of sampling without increasing patient burden. KD
have already been successfully implemented for cryptography
applications15, user authentication16,17 and group based anal-
yses in both MS18, Parkinson’s disease (PD)19 and Depressive
tendency (DT)20.

To our knowledge KD have not been implemented pre-
viously within an MS population outside of single time-
point correlational analysis18 and short-term responsiveness
analysis21 produced from this same study cohort. Other tech-
nological solutions have been used within a MS population to
attempt to solve the limitations of classic methods. Aside from
digitalized Patient Reported Outcomes (PRO) there are also
digitalized finger and foot tapping tasks which show higher
sensitivity and specificity to detect clinical disease progres-
sion than the 9HPT and T25FW22. Another digital solu-
tion to measure change in disease outcomes is through wear-
ables such as actigraphs which are designed to measure gait
or movement metrics. One such study found good correla-
tions between mobility-stance, turning angle velocity and pos-
tural sway, and the EDSS and multiple sclerosis functional
composite23. Additionally, correlations between REM sleep
based on digitally collected pulse rate variability and dis-
ease severity scores were found. These solutions are promis-
ing, however, digitalization of existing gold standard mea-
surements retain limitations of infrequent sampling and active
data collection. Wearables also introduce difficulties related
to comfort, distribution, and accessibility, which is unideal for
longitudinal assessment of a patient’s state24.

KD have been utilized within PD19 and DT20 populations.
PD is a movement disorder where disability is shown through
characteristic motor symptoms such as tremor, rigidity, and
bradykinesia. This is a logical technological fit for KD, mea-
suring symptomatic changes in fine motor skills. A compara-
ble study within PD recently used smart-phone derived timing
and pressure-based features to classify people with or without
PD. These data were collected in-person during transcription
of prescribed texts using a test Android phone.

Within a DT population20, KD also find a technological
fit. In this population symptoms such as sadness, loss of
energy, and increased fatigue can cause different psychomo-
tor behaviours. This psychomotor retardation is reflected in
changes in routine such as interaction with a smart device.
Gold standards in this population involve in-person clinical
diagnosis using the Diagnostic Statical Manual of Mental Dis-
orders as well as other standard rating scales. Questionnaires
such as these can be biased by subjectivity and impacted by
disease stigma and population motivation. In one study, a
Random Forest Classifier was used to distinguish a HC pop-
ulation from participants with DT, through natural typing on
their own (Android) smartphones in a real-world environment.

In both of the aforementioned studies19,20, a binary classi-
fication pipeline is applied to distinguish whether a user has
symptoms of PD or DT based on averaged predicted prob-
abilities from their keystroke data. This group based analy-

sis aimed to detect presence of disease based on typing be-
haviour. There are two key differences between these ex-
amples and the analysis shown here. The presented analysis
identifies changes in disease course through an individual ap-
proach, and the methods to do so have a focus on days when
a user is most changeable in order to amend the timing of that
user’s treatment25. In the current study the problem is concep-
tualised in a Non-Linear Time Series (NLTSA) framework.
Each KD feature is considered a time series and the identifi-
cation of EWS via Dynamic Complexity, is used to quantify
the pathology related status changes within the complex adap-
tive system, that is each user.

This non-linear methodology has recently been applied in
research looking to identify change in self-report high fre-
quency data of a single patient with depression26. In this
study continuous self-report was found to have the properties
of a complex dynamical system given by 1) memory - that
the current state is dependent on previous states - exhibited by
long range temporal correlations, 2) non-stationarity - that the
mean changes over time, often with multiple change points,
3) sensitive dependence on initial conditions - indicated by
the limited predictive horizon, that forecasting upcoming val-
ues is nearly impossible due to the structure of the data. To
address these challenges, the Adaptive DynAmic Pattern The-
ory (ADAPT) of psychopathology was introduced25. Here the
authors postulate that all observable phenomena of the body
and mind arise from a complex adaptive system - the individ-
ual in their environment. They therefore theorise that pathol-
ogy is a self-organising emergent property of this system and
claim that changes can be described using general principles
of pattern formation in complex adaptive systems.

Prior to this unifying theory, ADAPT has been applied in
different forms in the literature. In neurology, the Lyapunov
exponent of Electroencephalogram (EEG) data has been used
to identify a decrease in brain complexity of patients with
Alzheimer’s disease (AD)27. The sample entropy of resting
state functional MRI data has been used to quantify the differ-
ence in brain complexity between individuals with and with-
out attention deficit hyperactivity disorder on a group level28.
Recurrence Quantification Analysis (RQA) summary statis-
tics applied to Autonomic Nervous System signals, for ex-
ample heart rate, have been used to correlate with gold stan-
dards in the field of anxiety29. A method of quantifying peak
complexity similar to the current study was used to predict
treatment outcomes in mood disorders30,31. This study used
changes in complexity of a daily self rating by patients un-
dergoing therapy for mood disorders to predict each patient’s
therapeutic outcome.

In this paper we combine the use of KD biometrics collected
via smartphone interactions and NLTSA within an MS popu-
lation. As a matter of comparison, a set of HC is considered.
We hypothesize that we will see individual change within KD
where there is a change in outcome measures within the clin-
ical population, and expect no change within the HC popula-
tion. Our proposed approach enabled detection of individual
patient status changes in outcome measures through the use of
a non-linear framework and shows promise for utilization in
precision medicine within MS.
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II. STUDY OVERVIEW

The current section will address the study design: a de-
scription of the populations and how and when the data were
collected; the clinical outcomes: a summary of the clinical
outcomes used in this study to assess disease activity in MS;
keystroke data acquisition: an introduction to the Neurokeys
technology; and the ethical approval of the study.

A. Study design

The data have been collected through an observational co-
hort study carried out at Amsterdam University Medical Cen-
ter, location VU University Medical Centre. This study oc-
curred over five clinical visits with three-month intervals for
a total duration of 12 months. Keyboard interaction data was
remotely collected throughout the study. Participants with MS
and HC were included from August 2018 to December 2019.

Study inclusion criteria were: regular use of a smartphone
with Android or iOS, age between 18 and 65 years, and def-
inite diagnosis of MS. The exclusion criteria were: EDSS
score of 7.5 or higher, clinical disease activity or changes in
disease modifying drugs in the past two months, significant
visual or upper extremity deficits affecting the ability to type
on a smartphone, and clinically significant mood, sleep or be-
havioural disorders judged by a screening physician. For fur-
ther information regarding the study design refer to18.

Patient reported outcomes were collected at Baseline
(m00), 2-week follow up (m002), and then at 3 month inter-
vals following baseline (m03, m06, m09, m12) for participants
with MS, and m00, m002 and m03 for HC participants. MRIs
were carried out at m00, m03, m06, m09 and m12 for partici-
pants with MS, and not carried out for HC participants. Clini-
cal outcome measures were collected at m00, m03, m06, m09,
m12 for MS participants, and m00, m03 for HC participants.
To measure disease activity, data were gathered via MRI of
the brain and included T1 weighted images after administra-
tion of gadolinium (Gd). These images were assessed by a
neuroradiologist to detect presence of Gd-enhancing demyeli-
nating lesions as an indication of inflammatory activity32.

B. Clinical outcomes

Outcome measures relating to disease activity and clinical
disability, fatigue and quality of life were collected and as-
sessed. These include: MRI32, EDSS8, 9HPT9,10, T25FW33,
Ambulation, Arm Function in Multiple Sclerosis Question-
naire (AMSQ)34, Symbol Digit Modalities Test (SDMT)35,
Fatigue Severity Scale (FSS)36, Checklist Individual Strength
- 20 Revised (CIS-20R)37, Modified Fatigue Impact Scale
(MFIS)36, Global Rate of Change Fatigue (GRC-fatigue)18,
Global Rate of Change QoL (GRC-QoL)18.

C. Keystroke data acquisition

Keystroke data were collected from the participants using
their mobile device following the installation of Neurokeys.
This app consists of a customized software keyboard with
identical layouts and similar capabilities compared to the de-
fault keyboards in iOS and Android, such as auto-correction
and word prediction. Once the participants installed Neu-
rokeys, data from each of their typing sessions were gathered.
The raw data consisted of timestamps of key presses and re-
leases augmented with typing metadata such as the number of
typing events and backspaces. Note that in order to guaran-
tee the privacy of the participants neither letters nor the (X ,Y )
coordinates relative to the keys pressed were captured at any
point by Neurokeys. All data gathered by the application was
temporarily stored locally on the mobile device and subse-
quently sent in batches to a secure cloud storage whenever an
internet connection was available.

D. Study approval and ethics approval

The study protocol was approved by the local institutional
ethics review board (reference 2017.576) and conformed to
the General Data Protection Regulation (GDPR). In compli-
ance with Dutch legislation regarding clinical research involv-
ing medical devices, the Dutch Health and Youth Care Inspec-
torate were notified of the study (reference VGR2006948).
Written informed consent was obtained from all participants.
The study was registered at trialregister.nl (NL7070).

III. METHOD

This section will address the feature engineering: the steps
taken to go from keystroke related timestamps to meaning-
ful KD features; the feature selection: a description of the
methodology used to select the keystroke features that were
used in the analysis. This section also provides an explanation
of which keystroke features were chosen; and the construction
of complexity measures: the mathematical formulation of the
complexity measures used in this study to evaluate change in
KD.

A. Feature Engineering

In order to construct features coming from KD, we first de-
fined hold time HTn as the difference between the press and
release of a key, and flight time FTn = the time between a key
release and a key press, that is:

HTn = tr
n− t p

n n = 1,2, . . . ,N (1a)

FTn = t p
n+1− tr

n n = 1,2, . . . ,N−1 (1b)

where t p
n and tr

n denote the timestamp sequences relative to the
key press and release events, respectively, with N equal to the
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FIG. 1. Depicts a graphical representation of keystroke variables col-
lected within a typing session. Here duration SD1 = t f − ti where ti
and t f describes the time when the keyboard is on-screen and off-
screen, respectively. The hold time keystroke variable HT{1,2,3} rep-
resents the time for which a key is pressed, whereas correction du-
ration CD1 denotes the hold time relative to the backspace key. The
Flight Time keystroke variable (FT1) is the time between two key
presses whereas Pre Correction Slowing (PreCS1), Post Correction
Slowing (PostCS1) and After Punctuation Pause (APP1) are special
cases of flight time relative to the time before and after a backspace
and the time after a punctuation, respectively.

total number of keys pressed during a specific interval, for ex-
ample, daily, hourly or session intervals. Additional keystroke
variables were constructed as special cases of FTn and HTn,
namely38–40:

• After Punctuation Pause (APPn) - the flight time after
a punctuation mark such as a question mark "?" or an
exclamation point "!";

• Post Correction Slowing (PostCSn) - the flight time af-
ter a backspace keystroke;

• Pre Correction Slowing (PreCSn) - the flight time prior
to a backspace keystroke;

• Correction Duration (CDn) - the hold time relative to a
backspace keystroke;

• Session Duration (SDn) - the time when the keyboard is
on-screen.

Fig. 1 graphically summarizes the keystroke variables intro-
duced above.

In order to avoid outliers coming from edge cases, such as
cases when the keyboard is on-screen without any typing ac-
tivity or when special characters are required, FTn and HTn
were opportunely filtered prior to any further mathematical
operation. Once sequences of keystroke variables were avail-
able, it is common practice to compute summary statistics
within a specific time interval, for instance daily or hourly
intervals. In the current study, a daily interval has been cho-
sen. These aggregations were defined as a linear or non-linear
function Γ(xp) : ℜN → ℜ where xp ∈ ℜN represents a se-
quence of keystroke variables containing N data points rela-
tive to the participant p.

B. Feature Selection

In order to retain the features with the most amount of com-
plexity information, a feature selection procedure was car-
ried out in a non-linear fashion via RQA41,42. In short, RQA
aims to identify time series which exhibit recurrent patterns by
analysing the Recurrence Plot which is formally defined as a
matrix R(ε,y) ∈ ℜNR×NR where NR is the length of a time
series y and where each element of the matrix is given by:

ri, j =

{
1 i f ‖yl− ym‖1 ≤ ε

0 otherwise (2)

where ε ∈ ℜ denotes the threshold distance and (l,m) =
1,2, . . . ,NR. In the current study, an explicit threshold dis-
tance was not defined, instead a required Recurrence Rate
(RR) was specified. This method was chosen in order to make
the comparison of the Recurrence Plots (RPs) and the result-
ing summary statistics of each of the features per user pos-
sible. Note that prior to RQA missing values present in the
time series, (e.g. insufficient use of the keyboard during the
day) were imputed using the Classification and Regression
Trees (CART) method43 implemented in the MICE44 pack-
age. The MICE package creates multiple imputations based on
Fully Conditional Specification45, where each time series with
missing values is imputed by a separate model. The amount
of missing values varied per keystroke feature and user, de-
spite the median percentage of imputed values being roughly
1 %. RQA was conducted within a PYTHON environment and
using the package PYUNICORN42 with user defined parame-
ters specified in Table I. An example of a RP relative to the
participant with user ID = 389 is shown in Fig. 2.

TABLE I. RQA parameter setting.

RQA parameters Symbol Value
embedding dimension m 3.0
embedding delay τ 2.0
recurrence rate RRτ 0.05
line length minimum lmin 2.0
vertical length minimum vmin 2.0
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FIG. 2. Depicts the daily median value of flight time µ̃ (FTn) relative
to the participant with user ID = 390 (Top plot) with corresponding
RP (Bottom plot). From the square structures seen in the RP it can be
seen that there are periods of high recurrence with abrupt transitions
in the middle of the time series (day 175 - 225).

By means of R(ε,y) the RQA summary statistics41,46 were
extracted, namely Shannon Entropy, Determinism and Lami-
narity for each participant and for each KD feature.

For each summary statistic the 10 features with the highest
median values were selected. This lead to 30 features selected,
any duplicates were then dropped. Of these features the corre-
lation of percent change was calculated to avoid redundant in-
formation in the feature set. The procedure mentioned above
led to a feature subset aggregated as follows:

• Mean value of a central approximation of the second
derivative equal to:

µ
′′ (x) =

1
2(N−2) ∑

i=1,...,N−1

1
2
(xi+2−2 · xi+1 + xi)

The following keystroke variables combined with the
µ ′′(x) operator were selected: PreCSn , PostCSn, CDn,
APPn, SDn.

• Mean change, that is the mean over the differences be-

tween subsequent time series values given by:

µc (x) =
1

N−1 ∑
i=1,...,n−1

xi+1− xi

For this type of aggregation only APPn was selected.

• Mean absolute change, namely the mean over the abso-
lute differences between subsequent time series values,
written as:

µ|c| (x) =
1
N ∑

i=1,...,N−1
|xi+1− xi|

For this type of aggregation only the keystroke variable
FTn was selected.

• Partial autocorrelation with lag k which for a time se-
ries refers to the partial autocorrelation of xi with xi−k,
conditional on xc := {xi−1, . . . ,xi−k+1}, defined as47:

αk (x) =
Cov(xi,xi−k|xc)

Var(xi|xc) ·Var(xi−k|xc)

For this type of aggregation PostCSn was the only
keystroke variable selected using lag k = 1.

Furthermore, the standard deviation of hold time σ (HTn), the
median of flight time µ̃ (FTn), the maximum value of flight
time max(FTn) and the skewness of hold time s(HTn) were
also selected. A selection of the chosen features are shown in
Fig. 3 for three different users.
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FIG. 3. Depicts examples of day-to-day variation of the selected keystroke features of a patient with MS with change in MRI, a patient with
MS with no change in MRI, and a HC subject. For plot legibility a random subset of the features has been chosen. Interestingly there are
distinct differences in amount of change between the 2 users with MS, and the HC user. Furthermore, it can be seen that for a certain user one
feature may have pertinent change information, but not in another user. For example, flight time median exhibits a period of instability for the
MS user with no change in MRI, whilst this is not the case for the HC user. For a more in depth investigation of the features in these users see
the supplemental material.

C. Construction of complexity measures

Human change processes are characterized by both non-
linear and non-stationary dynamics which can lead to chaotic
behaviour with discontinuous phases accompanied by critical
instabilities that precede and enable such transitions48,49. Ac-
cording to Schiepek and Strunk50, non-stationary phenomena
and critical instabilities can be identified via the Fluctuation
Intensity and the Distribution Uniformity calculated within a
moving window with mw measurement points.

The Fluctuation Intensity is a measure sensitive to the am-
plitude and frequency of changes which occur in the time se-
ries x ∈ℜN and is given by:

F(x,mw) =
1

(xM− xm)(mw−1)

mw−1

∑
k=1

|xk+1− xk|
nk+1−nk

, F ∈ [0,1]

(3)
where the index k refers to the points of return, specifically,

the number of changes in slope of the time series, whereas xM
and xm denote the maximum and minimum value of x, respec-
tively. Conversely, the Distribution Uniformity D quantifies
the irregularities of x by comparing it with an ideal distribu-
tion produced by another time series y with equal number of
time points N, and is defined as:

D(x,y,mw) = 1−
mw−1

∑
c=1

mw

∑
d=c+1

d−1

∑
a=c

d

∑
b=a+1

∆baΘ(∆ba)

yb− ya
, D ∈ [0,1]

(4)
with ∆ba = (yb− xb)− (ya− xa) that quantifies the aberration
of x with respect to y, and Θ(·) the Heaviside step function.
The two outer sums are permutations of all combinations of c
and d within the window, whereas the inner sums with index
a and b are representing all combinations of positions within
the interval given by c and d. In the current study, it was
considered a moving window with mw = 28 days to account
for the slow changes in disease activity in MS.

For each feature, both F and D are computed, and subse-
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quently merged via an element-wise multiplication in order
to construct the Dynamic Complexity50 denoted as C. The
dynamic complexity contains information regarding the dis-
tribution, amplitude, and frequency changes of the keystroke
feature in one single time series of length N −mw. Finally,
the EWS are quantified by the Cumulative Complexity Peaks
(CCP)51 which in this case are carried out whenever the stan-
dardised keystroke feature’s Dynamic Complexity (C) is big-
ger than the 99th quantile. The C and CCP were calculated
within an R environment using the CASNET package52, and
illustration of them is provided in Fig. 4 relative to the user
390.

FIG. 4. Displays a graphical example of the Dynamic Complexity C
(plot 1) with the corresponding Cumulative Complexity Peaks (plot
2) relative to user 390. For each feature selected using the approach
described in section III B, the C is computed by multiplying element-
wise the Fluctuation Intensity F and the Distribution Uniformity D.
The top plot is known as Complexity Resonance Diagram and it high-
lights the number of changes that occur in the keystroke dynamics.
For instance, one can observe that the standard deviation of flight
time has predominantly no changes except for the period of time
from day 328 onwards. Such abrupt change is seen as critical in-
stability which is visualized in the bottom plot in pink. In plot 2,
one can also observe that the cumulative complexity peaks are trig-
gered and flagged in red (top row named SIG. CCP) when critical
instabilities occur simultaneously from different sources.

IV. RESULTS

The NLTSA approach was applied to 13 MS users with
change in Gd enhancing lesions, 21 MS users with no change
in Gd enhancing lesions and 24 HC. Fig. 5, summarizes the
entire data processing pipeline, including the collection from
the keyboard, the creation of the aggregate features, the im-
putation of missing values, the feature selection via RQA, the
scaling, and the steps taken to create the C and CCP.

Fig. 2 shows the method used to select features, the RP,
here the FTn median is shown. Of note in this plot are the
square structures formed by the recurrent points along the time
series. These are apparent between days 0 - 76, days 80 -
171, and days 210 - 363. Pertinent to this analysis is the clear
destabilization between days 171 - 210 indicated by a compa-
rably small amount of recurrent points (very few short term
and some long term points), and the corresponding period in
the line plot.

Following feature selection, an inspection of the chosen
features in a subset of the users was undertaken. Fig. 3 shows
a subset of the selected features for a single user from each
group. Of note in this plot is the differences between the two
users with MS and the HC user. This is most prominent in
the µ ′′(x) of the session duration and the hold time standard
deviation. Here you can see there is a small amount of vari-
ance for the two users with MS and a gaussian distribution for
the HC user. Furthermore, the FTn median is more indicative
of state change for the users with MS, as there are periods
in the time series which are elevated in comparison with the
HC user. The FTn median of the HC user fluctuates around a
relatively stable mean.

To visualize change in the selected features over time Fig. 4
shows the Complexity Resonance Diagram (figure 4 - 1), a vi-
sualization of the C for each keystroke feature, and the Cumu-
lative Complexity Peaks Plot (Fig. 4 - 2), a visualization of the
CCPs relative to user 390. Here one can see that there are fea-
tures which are inherently highly changeable, for example the
FTn maximum. There are also features which do not change
often, for example the HTn standard deviation. Interestingly,
there is a period of comparable high change which is quanti-
fied by the CCPs. To highlight this concept, the µ ′′(x) of the
SDn, PostCSn and CDn are reasonably changeable across the
whole period. However, for the days surrounding and includ-
ing day 213, there is comparatively higher complexity than the
rest of the time. This indicates a period of destabilisation and
based on ADAPT25 signifies this as the best period to apply
an intervention. This higher complexity is highlighted in the
CCP plot and is used in the final results to compare change in
keystroke features to the outcome measures.

Figure 6 shows the sum of the dynamic complexity (C),
the cumulative complexity peaks (CCPs), and the clinical out-
come measures that were considered to have clinically rele-
vant change, per user, between at least two time points ac-
cording to literature8–10,32–37 for an appropriate sample size.
Here it can be seen that in all the examples of patients with
MS, changes in C and the occurrence of CCPs coincided with
clinically relevant change in outcome measures.
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In a-d) there are clear changes (increases and decreases) in
the clinical outcome measures which coincide with the CCPs.
For example, in b) there is a distinct increase in the amount
of Gd enhancing lesions which coincides with a CCP. Whilst
there was a certain amount of change in the C in the HC popu-

lation (e) and f)) there were no CCPs (other than at the begin-
ning and end of the study), and little to no clinically relevant
changes in the outcome measures (for the results of all users
see supplemental material).

𝒙!

𝐷" 𝐷# 𝐷$%" 𝐷$…

Feature	selection

Imputation

F(⋅) D(⋅)

𝒙" = 𝒙! ∪ 𝒙#

Γ(⋅)

𝒙#

look-up	table

C(⋅)

CCP

Scaling

FIG. 5. Keystroke feature construction and non-linear time series pipeline. With respect to keystroke dynamics, for each participant p the
flight time FTn, hold time FTn and session duration SDn are constructed and stored in the array xb. The array x f which contains the remaining
keystroke variables, namely, after punctuation pause APPn, correction duration CDn, pre and post correction slowing PostCSn, PreCSn are
derived by opportunely filtering FTn and HTn via specific typing events such as backspace and selection of punctuation. Subsequently, an
outlier removal procedure is carried out and missing values are imputed using the CART algorithm53. Keystroke features are then obtained by
aggregating several linear and non-linear functions Γ(·) such as partial autocorrelation αk and absolute mean absolute change µ|c| (x) within a
daily Di, i = 1,2, . . . ,e time interval. The keystroke features are normalised between 0 and 1, to avoid over representation of a feature, and both
the Distribution Uniformity D(·) and Fluctuation Intensity F (·) are computed for each keystroke feature. Finally, the Dynamic Complexity
C (·) is calculated as the product of F (·) and D(·) and the Cumulative Complexity Peaks (CCPs) are obtained.
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FIG. 6. Depicts the sum of the dynamic complexity on a daily basis (C; shown as black dots), the cumulative complexity peaks (CCPs; shown
as vertical dashed red lines) and corresponding clinical outcome measures for a selection of users. Only clinical outcomes considered to have
clinically relevant change based on clinically used cut offs from literature are included in the figure. The change in of Gd enhancing lesions
is highlighted in bold. a) and b) are patients with MS which also have changes in the amount of Gd enhancing lesions. c) and d) are patients
with MS which do not have changes in amount of Gd enhancing lesions. e) and f) are examples from the HC population. It is noticeable that
there are no data for the sum of C or CCPs in the beginning of each plot. This is due to the size of the sliding window used to calculate these
values being set to mw = 28 days.
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V. DISCUSSION

This study aimed to test the feasibility of using NLTSA within
KD derived behavioural biometrics. As hypothesized the re-
sults showed daily change in KD for all users, but only clin-
ically relevant changes in the population with MS, both with
and without Gd enhancing lesions. Furthermore, these clin-
ically relevant changes often coincided with changes in the
outcome measures. The clinically relevant changes in KD can
be seen as EWS for changes in disease activity of the patient
prior to the change occurring. The results from this study
are preliminary evidence for the use of the quantification of
change in KD, a continuous, objective, non invasive measure,
as a proxy for change in disease activity and disease status of
patients with MS. The striking differences between the groups
is a clear visual indication of how the change profiles of differ-
ent users can be indicative of the disease activity of MS over
time.

A finding that was not accounted for in our hypotheses was
the clinically relevant changes in KD in the HC population at
the beginning and the end of the study (as indicated by the
CCPs in figure 6). A plausible explanation for these CCPs
are the inherent perturbations to the system that is introduced
by each user when transferring keyboards from their default
keyboard to the Neurokeys keyboard, and back again. The
reason for why this is apparent in the HC population but not in
the participants with MS is likely due to larger changes in the
KD of these users masking the initial perturbations. Further
research is necessary to confirm this hypothesis.

An additional finding was the difference in destabilisation
profiles in specific KD features per user. The flight time me-
dian was a good example of this as there was a distinct mo-
ment of destabilisation in user 390, but such a moment was
not clear in other users for this feature. Based on ADAPT it
is argued that this point in time is a transition between states
for the user. This period would be the time to implement an
intervention for the best possible outcome for user 390, but
not for the other users per se.

While interpreting the findings of this study, some limi-
tations need to be considered. In order to better match the
changes in C of the KD to the clinical outcome measures,
a better approach would have been to administer the out-
come measures at more regular intervals than once every
three months. For the measures administered during the clin-
ical visits (EDSS, 9HPT, T25FW, SDMT) and the MRI, this
would not have been feasible. However a higher sampling rate
for the self report measures (AMSQ, FSS, CIS-20R, MFIS,
GRC-fatigue, GRC-QoL) would be possible, and would al-
low for clearer insights into the change profiles of the clini-
cally validated outcome measures, leading to better matching
with the KD change profiles. Furthermore, due to the prelim-
inary nature of this exploratory study, there is currently not a
quantification of how well the C and the CCPs coincide with
the changes in the outcome measures. Building on the current
analysis, one could investigate the capabilities of both the C
and the CCP in predicting changes in the outcome measures,
using time series based predictive modelling54. The dynam-
ics of complex systems approach to KD would also benefit

from future research investigating other methods of feature
selection. The current study uses RQA summary statistics,
however there are a host of NLTSA approaches which could
be used to select promising keystroke features, for instance
Detrended Fluctuation Analysis55. Moreover, more in depth
analysis into an appropriate sliding window size for the cal-
culation of F and D of KD in MS is necessary. In this study
we chose a sliding window of 28 days due to the changes in
disease activity in MS being markedly slow, whilst still maxi-
mizing the amount of data being shown (as the larger the slid-
ing window, the larger the lead in of the F and D). Lastly, the
keystroke feature selection was conducted on a group level
across all the users, however the results of this analysis would
likely be improved by doing individualised feature selection
specific to each user. Feature selection on an individual level
would likely improve the results as each keystroke feature
could hold more complexity information to one user over an-
other. For example, one user may have typing sessions that are
very consistent and therefore have low complexity, whereas
another user may usually type quickly and have short session
durations, apart from when they have a worsening of symp-
toms.

VI. CONCLUSION

The application of non-linear methods to identify Early
Warning Signals in Keystroke Dynamics in order to better
monitor change in the course of a MS patient’s disease state is
compelling despite the exploratory nature of the study. Con-
tinued research in this area is impactful given its potential to
reduce patient burden and allow for improved remote monitor-
ing of patient state. Furthermore, because this approach is on
an individual level, using high frequency data, possible pre-
dictions would be specific to each user, and as such would be
a first step in the direction of precision medicine. In the future,
the next steps of predictive modelling could be achieved using
the change in Dynamic complexity and Cumulative Complex-
ity Peaks as predictors. This ultimately could facilitate more
timely interventions and positively impact disease course.

SUPPLEMENTAL MATERIAL

See supplemental material for complete R markdown
scripts for the data pipeline and final results.
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