Module jms_estimator.tests.test_template
Expand source code
import pytest
import numpy as np
from sklearn.datasets import load_iris
from numpy.testing import assert_array_equal
from numpy.testing import assert_allclose
from jms_estimator import JmsEstimator
from jms_estimator import JmsTransformer
from jms_estimator import JmsClassifier
@pytest.fixture
def data():
return load_iris(return_X_y=True)
def test_Jms_estimator(data):
est = JmsEstimator()
assert est.demo_param == 'demo_param'
est.fit(*data)
assert hasattr(est, 'is_fitted_')
X = data[0]
y_pred = est.predict(X)
assert_array_equal(y_pred, np.ones(X.shape[0], dtype=np.int64))
def test_Jms_transformer_error(data):
X, y = data
trans = JmsTransformer()
trans.fit(X)
with pytest.raises(ValueError, match="Shape of input is different"):
X_diff_size = np.ones((10, X.shape[1] + 1))
trans.transform(X_diff_size)
def test_Jms_transformer(data):
X, y = data
trans = JmsTransformer()
assert trans.demo_param == 'demo'
trans.fit(X)
assert trans.n_features_ == X.shape[1]
X_trans = trans.transform(X)
assert_allclose(X_trans, np.sqrt(X))
X_trans = trans.fit_transform(X)
assert_allclose(X_trans, np.sqrt(X))
def test_Jms_classifier(data):
X, y = data
clf = JmsClassifier()
assert clf.demo_param == 'demo'
clf.fit(X, y)
assert hasattr(clf, 'classes_')
assert hasattr(clf, 'X_')
assert hasattr(clf, 'y_')
y_pred = clf.predict(X)
assert y_pred.shape == (X.shape[0],)
Functions
def data()
-
Expand source code
@pytest.fixture def data(): return load_iris(return_X_y=True)
def test_Jms_classifier(data)
-
Expand source code
def test_Jms_classifier(data): X, y = data clf = JmsClassifier() assert clf.demo_param == 'demo' clf.fit(X, y) assert hasattr(clf, 'classes_') assert hasattr(clf, 'X_') assert hasattr(clf, 'y_') y_pred = clf.predict(X) assert y_pred.shape == (X.shape[0],)
def test_Jms_estimator(data)
-
Expand source code
def test_Jms_estimator(data): est = JmsEstimator() assert est.demo_param == 'demo_param' est.fit(*data) assert hasattr(est, 'is_fitted_') X = data[0] y_pred = est.predict(X) assert_array_equal(y_pred, np.ones(X.shape[0], dtype=np.int64))
def test_Jms_transformer(data)
-
Expand source code
def test_Jms_transformer(data): X, y = data trans = JmsTransformer() assert trans.demo_param == 'demo' trans.fit(X) assert trans.n_features_ == X.shape[1] X_trans = trans.transform(X) assert_allclose(X_trans, np.sqrt(X)) X_trans = trans.fit_transform(X) assert_allclose(X_trans, np.sqrt(X))
def test_Jms_transformer_error(data)
-
Expand source code
def test_Jms_transformer_error(data): X, y = data trans = JmsTransformer() trans.fit(X) with pytest.raises(ValueError, match="Shape of input is different"): X_diff_size = np.ones((10, X.shape[1] + 1)) trans.transform(X_diff_size)